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Abstract: Grinding is commonly responsible for the liberation of valuable minerals from host rocks but 

can entail high costs in terms of energy and medium consumption, but a tower mill is a unique power-

saving grinding machine over traditional mills. In a tower mill, many operating parameters affect the 

grinding performance, such as the amount of slurry with a known solid concentration, screw mixer 

speed, medium filling rate, material-ball ratio, and medium properties. Thus, 25 groups of grinding 

tests were conducted to establish the relationship between the grinding power consumption and 

operating parameters. The prediction model was established based on the backpropagation “BP” neural 

network, further optimized by the genetic algorithm GA to ensure the accuracy of the model, and 

verified. The test results show that the relative error of the predicted and actual values of the 

backpropagation “BP” neural network prediction model within 3% was reduced to within 2% by 

conducting the generic algorithm backpropagation “GA-BP” neural network. The optimum grinding 

power consumption of 41.069 kWh/t was obtained at the predicted operating parameters of 66.49% 

grinding concentration, 301.86 r/min screw speed, 20.47% medium filling rate, 96.61% medium ratio, 

and 0.1394 material-ball ratio. The verifying laboratory test at the optimum conditions, produced a 

grinding power consumption of 41.85 kWh/t with a relative error of 1.87%, showing the feasibility of 

using the genetic algorithm and BP neural network to optimize the grinding power consumption of the 

tower mill. 

Keywords: tower mill, grinding power consumption, energy saving, genetic algorithm, BP neural 

network 

1. Introduction 

Under the guidance of the "double carbon" goal and the global zero carbon future action plan, the work 

of "energy saving, reducing cost, and increasing efficiency" in mining industry is essential (de Bakker 

2013; Liu et al., 2022). The most energy-consuming operation in the mining industry is comminution 

which consists of crushing and grinding stages (Tromans, 2008). Crushing is more energy-efficient than 

grinding, but grinding is becoming an increasingly essential operation in mineral processing to liberate 

valuable minerals from host rocks (Fuerstenau and Abouzeid, 2002). Thus, grinding can entail high 

costs of more than 50% in terms of energy consumption and media use (de Bakker, 2013; de Carvalho 

and Tavares, 2013; Gupta and Sharma, 2014). Thus, it is essential to investigate saving and consumption 

reduction of energy (Shi and Xie, 2016; Yuan and Zhang, 2022). 

A tower mill is a kind of wet vertical stirred grinding equipment utilizing steel balls or pebble 

grinding media (Stief et al., 1987). It has a unique design for fine grinding, and provides power savings 

of up to 50% over traditional grinding equipment due to the use of much smaller grinding media (Stief 

et al., 1987; Valery and Jankovic, 2002). It was established for many years as a superior to ball mills 

(Danielle et al., 2017). For example, a tower mill can be employed for a fraction of the cost of an 

equivalent ball mill. The grinding kinetics of a pilot scale unit were investigated, and unlike normal 

grinding systems, it can be fitted with a simple first-order breakage model (Austin and Schneider, 2022). 

http://www.minproc.pwr.wroc.pl/journal/
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In tower mills, there are many operating parameters affecting the grinding performance, such as the 

amount of slurry with a known solid concentration, screw mixer speed, medium filling rate, material-

ball ratio, and medium properties. Tower mill has some other unique features such as less installation 

cost, less operation cost, less floor space, less noise, and less vibration (Stief et al., 1987). The tower mill 

was used in a comminution circuit instead of the energy-inefficient ball mill in the copper-lead-zinc ore 

processing plant after the primary jaw crusher, secondary cone crusher, and tertiary high-pressure 

grinding rolls. The circuit reduced the size from 12 mm to 85% finer than 75 µm, with up to 20.16% 

energy savings (Li et al., 2023). This type of grinding mill has been reviewed, and the advantages of 

these mills and their potential to revolutionize industrial processes for achieving the energy-efficient 

ultra-fine grinding of particles were highlighted (Kumar et al., 2023).      

In terms of the excellent grinding performance of the tower mill, it is necessary to maintain the 

grinding energy consumption of the tower mill at a minimum, and the reasonable selection of key 

operation parameters is an important part. Although the power of the tower mill can be monitored in 

real-time, the detection of particle level distribution of grinding products is often obtained by offline 

manual sorting, which not only costs a lot of manpower and material resources but also the results to 

lag behind the site situation, which is of little significance to real-time control guidance. With the 

development of computer technology, the artificial neural network technology has been gradually 

applied in the mining engineering. For instance, the discrete element method has been used to simulate 

and optimize the operating factors of the tower mill, and the results indicated that, under the critical 

screw speed, the larger the speed the better the grinding performance, and the best screw speed was 

210 r/min. Also, the results showed that the lower the filling rate the lower the grinding strength, and 

the larger the filling rate the lower energy consumption, and the best filling rate was 60% (Zhengming 

et al., 2016). Also, the backpropagation “BP” neural network algorithm was employed to model and 

optimize the grinding processes of alumina with diamond wheels (Warren Liao and Chen, 1994). From 

the simulation data obtained, it is indicated that the used neural network produces a more accurate 

operational model than the regression method. It is also illustrated that dissimilar to the conventional 

backpropagation network, proper use of the Boltzmann factor with BP can effectively avoid local 

minima and generate the global best solution (Warren Liao and Chen, 1994). 

In this study, the relationship between grinding power consumption and operating parameters was 

investigated to establish the prediction model of grinding power consumption based on the “BP” neural 

network algorithm and to optimize the extreme value of the neural network genetic algorithm. The BP 

neural network algorithm is one of the most widely applied neural network models, and it is a multi-

layer feedforward network performed to minimize the mean squared error “MSE” to adjust the model’s 

parameters. The established prediction model can be utilized to guide the optimization process of 

grinding power consumption, which has great guiding significance for the selection of grinding 

operation parameters of tower mills. 

2. Materials and methods 

2.1. Materials 

The ore sample used in the test is the rough separation concentrate of high-pressure grinding roll 

products in an iron mine in Hebei Province. The rough separation process of high-pressure grinding 

roll products is shown in Fig. 1. After the raw ore with particle size finer than 20 mm is crushed by a 

high-pressure grinding roll, products are wet-screened using a sieve with a sieve size of 3 mm. The 

under-screened product (-3 mm) is separated using a wet permanent cylinder magnetic separator to 

obtain the test ore sample used in this study, and its size distribution is shown in Table 1. Then the test 

sample which is the concentrate of the rough separation process is fed to the tower mill to investigate 

predict and optimize its performance.  

The tower mill used in the test is TM 200-2.2. The effective volume of the mill is 13 L. The drive motor 

power is 2.2 kW. The size of the screw mixer is 140 mm. The filling ball medium is 5 mm and 8 mm. The 

output power of the tower mill is read directly from the electrical control cabinet. The tower mill has a 

reasonable structure, it occupies a small area, and it has a stable operation and small noise.  

In the grinding process, the tower mill chamber fills with water. Then the ball media is released into 

the  chamber  from  the  top. Then all fresh material is fed from the bottom of the grinding chamber. The 
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Fig. 1. Tower mill grinding after rough separation process of high-pressure grinding roll products in an iron mine 

Table 1. Particle size analysis results 

Size fraction (mm) Yield (%) Passing cumulative yield (%) 

+2.0 2.45 100.00 

-2.0+1.0 13.15 97.55 

-1.0+0.63 15.91 84.40 

-0.63+0.15 29.23 68.49 

-0.15+0.074 19.98 39.26 

-0.074 19.28 19.28 

Total 100.00  

over-grinding is minimized because the finer particles are discharged by the upper-flow and exit 

through the upper-flow outlet, while the large particles remain in the lower part of the grinding 

chamber until the target size is produced. The ball media and the feed material can realize an orderly 

motion cycle and macroscopic forces balance due to the action of centrifugal, gravity, and friction forces. 

Thus, the material breakage is performed by attrition and not by impact, providing less grinding energy 

and lower media consumption. In addition, the media is easily refilled during the grinding operation 

from the top of the grinding chamber.   

2.2. Test method 

Using a fixed grinding time, a certain quantity of ore sample is weighed each time, and the grinding test 

is conducted under a corresponding condition. After the grinding process, the products are filtered, 

dried, screened, and analyzed. The work index of the grinding operation is represented by the grinding 

power consumption E of the newly generated -0.074 mm product. This index indicates the level of 

energy consumption efficiency. The equation expression is as follows: 
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                  𝐸 =
𝑃⋅𝑇

𝑀
                                                                                (1) 

where: E is the energy consumption of the newly generated-0.074 mm product, kwh/t; M is the quantity 

of the newly generated -0.074 mm product, t; T is the grinding time, h; P is the power of the mill, kW. 

The ratio of medium refers to the mass of 8 mm steel balls and the total mass of the steel balls, which 

is expressed as a percentage. The equation is expressed as follows: 

𝐷 =
𝑀1

𝑀1+𝑀2
× 100%                                                                     (2) 

where: D is the medium ratio,%; M1 is the mass of an 8 mm ball in the mill, kg; M2 is the mass of a 5 

mm ball in the mill, kg. 

2.3. Test data 

First, the grinding concentration, screw mixer speed, medium filling rate, medium ratio, and material-

ball ratio were determined as the influencing factors. Under the premise of the grinding time of 260 s, 

the change trend of each test factor was obtained. A total of 25 groups of grinding tests were conducted, 

and the test data were processed and displayed in the form of operating parameters corresponding to 

the grinding power consumption. The data are shown in Table 2. 

Table 2. Grinding test data sheet 

# 

  
 Experimental 

factor  
  

Milling power 

consumption 

(kW∙h/t) 

Grinding 

concentration 

(%) 

Speed 

(r/min) 

Medium filling 

rate  

(%) 

Media 

ratio  

(%) 

Material/ball 

ratio 

1 45 360 20.77  100 0.16 59.76  

2 50 360 20.77  100 0.16 52.45  

3 55 360 20.77  100 0.16 49.87  

4 60 360 20.77  100 0.16 48.43  

5 65 360 20.77  100 0.16 44.77  

6 70 360 20.77  100 0.16 47.86  

7 75 360 20.77  100 0.16 50.32  

8 65 340 20.77  100 0.16 44.06  

9 65 320 20.77  100 0.16 43.63  

10 65 300 20.77  100 0.16 44.39  

11 65 280 20.77  100 0.16 45.61  

12 65 260 20.77  100 0.16 47.62  

13 65 320 20.77  100 0.15 43.19  

14 65 320 20.77  100 0.14 44.11  

15 65 320 20.77  100 0.13 45.41  

16 65 320 20.77  100 0.12 47.81  

17 65 320 19.23  100 0.15 46.27  

18 65 320 17.69  100 0.15 49.95  

19 65 320 16.15  100 0.15 54.34  

20 65 320 14.62  100 0.15 60.60  

21 65 320 20.77  80 0.15 44.58  

22 65 320 20.77  60 0.15 47.25  

23 65 320 20.77  40 0.15 50.44  

24 65 320 20.77  20 0.15 55.49  

25 65 320 20.77  0 0.15 61.75  
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2.4. Modeling approach 

Genetic algorithm “GA” improvement of BP neural network prediction and optimization research is 

realized through MATLAB, which is mainly divided into three parts: BP neural network prediction 

model parameter determination, GA optimization of BP neural network prediction model, and neural 

network genetic algorithm function extreme value optimization. 

Five sets of experimental data were randomly selected from the 25 sets of grinding test data in Błąd! 

Nie można odnaleźć źródła odwołania. as test data, with test numbers 3, 11, 15, 19, and 23 as test data, 

and the remaining 20 sets were used as training data. 

The various operating parameters in the training data are taken as the network input, and the 

network parameters are constantly adjusted during the training process to influence the weights and 

thresholds of the network nodes so that the output of the network is close to the corresponding grinding 

energy consumption. the prediction grinding energy consumption values are compared with the actual 

values, while the correlation coefficient and mean square error are used as the evaluation indexes, to 

select the appropriate network parameters to determine the prediction model. Then, the genetic 

algorithm is used to optimize the BP neural network prediction model. The genetic algorithm initializes 

the population and determines the genetic operator, to determine the parameters of the GA-BP neural 

network prediction model. Based on the setting of GA-BP neural network prediction model parameters, 

the upper and lower limits of each influencing factor in the grinding data table are set to optimize the 

extreme value of the neural network genetic algorithm function. 

3. The BP neural network prediction model 

3.1. Determination of the BP neural network parameters 

3.1.1. Data normalization processing 

Data normalization is a method of scaling the sample data to the 0-1 range according to specific 

proportions. This method can transform the dimension into the dimensionless, so that the sample data 

is not limited by units, and make the training and prediction of the model more accurate. Scholars 

usually normalize the data by using the mean-variance method and the maximum minimum method 

to normalize the sample data with a function of mapminmax. 

3.1.2. Determination of the network structure 

The number of nodes in the input layer is 5 and that in the output layer is 1. This study has only 5 inputs 

and 1 output, which is not a complex solving problem. Therefore, the prediction model established in 

this study is a single-hidden layer, so the network structure is a 3-layer BP neural network. 

3.1.3. Determination of the number of hidden layer nodes 

The number of nodes in the hidden layer is the key factor in constructing the BP neural network 

prediction model. There is no clear selection method for selecting the number of nodes in the hidden 

layer. Usually, we refer to the previous empirical formulas for experimental exploration: 

𝐿 = √𝑀 + 𝑁 + 𝐴                                                                       (3) 

where L is the number of nodes in the hidden layer; M is the number of input nodes; N is the number 

of output nodes; and A is the adjustment constant between 1 and 10. 

In the prediction model, the number of input nodes M=5 and the number of output nodes N=1, so 

the number of hidden layer nodes L should be selected between 3 and 12. In order to select the best 

number of hidden layer nodes, the effect of the prediction model of different hidden layers is compared 

and analyzed. The preset parameters are shown in Table 3, starting the exploration test on the best 

number of hidden layer nodes. 

Based on Table 3, the number of nodes in the hidden layer 3-12 are selected for prediction simulation 

respectively. The mean square error and sample correlation coefficient generated by the model fitting 

of the number of nodes in different hidden layers are shown in Table 4. 

Table 4 shows that  as  the  number  of  nodes  in  the  hidden level increases from 3 to 9, the correlation 
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Table 3. The preset parameters of optimal hidden layer node number training 

Factor Parameter  Factor Parameter  

Number of input layer nodes 5 Training function trainlm 

Number of output layer nodes 1 Implied layer activation function logsig 

Frequency of training 300 Output-layer activation function purelin 

Learning rate  0.0001 Learning target  0.00001 

Table 4. Mean square error and sample correlation coefficient of different hidden layer nodes 

The number of 

hidden layer 

nodes 

Training sample  Test sample 

Correlation coefficient 
Mean square 

error  

Correlation 

coefficient 

Mean 

square error  

3 0.89753 14.6286 0.77552 10.9673 

4 0.93315 8.5851 0.95853 7.4027 

5 0.96771 13.024 0.96321 1.0346 

6 0.93846 2.9909 0.88991 6.3567 

7 0.9317 2.1631 0.96392 1.673 

8 0.97841 1.8664 0.91504 5.1594 

9 0.99977 1.6578 0.96289 1.9048 

10 0.99301 1.2425 0.9886 2.3495 

11 0.99273 2.3705 0.98177 4.4602 

12 0.99332 1.3756 0.97886 4.2264 

coefficient of the training sample increases, while the mean square error of the training sample 

decreases; the correlation coefficient of the test sample is basically rising, and the mean square error of 

the training sample also decreases. As the number of nodes in the hidden layer increases from 9 to 12, 

the correlation coefficient of the training sample is unchanged, and the mean square error of the training 

sample is also very small; the correlation coefficient of the test sample is basically unchanged, and the 

mean square error of the training sample also increases. When the number of nodes in the hidden layer 

is 9, the correlation coefficient reaches the maximum value is 0.99977, the mean square error of training 

samples is 1.6578; the correlation coefficients of test samples is 0.96289, and the mean square error of 

test samples is 1.9048. Whereas for 10 nodes in the hidden layer, for the training and test samples, the 

correlation coefficient are 0.99301 and 0.9886, and the mean square error are 1.2425 and 2.3495 

respectively. Thus, for a number of nodes in the hidden layer of 9 and 10, the difference in the correlation 

coefficient of the training samples is smaller, but the mean square error of the training samples is smaller 

when the number of nodes in the hidden layer is 10. Overall, the number of hidden layer nodes of the 

model takes a value of 10, and its structure is shown in Fig. 2. 

 

Fig. 2. The BP neural network structure diagram 

3.1.4. Determination of the training function 

The training function can enable the BP neural network to realize the adaptive adjustment threshold 

and weight based on the error, then affect the whole network structure, and play an important role in 

improving the accuracy of the model. In MATLAB, the commonly used training functions are trainoss, 

trainbfg, trainscg, traincgb, traincgp, traincgf, trainlm, trainrp and trainda. In order to select the best 
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training function, the prediction model effects of the above training functions are used for comparison 

and analysis. The preset parameters are shown in Table 5, and the best training function is explored. 

Based on Table 5, different training function prediction simulations are selected, and the mean 

square error and sample correlation coefficient generated by the model fitting of different training 

functions are shown in Table 6. 

Table 5. The preset parameters of the best training function training 

Factor Parameter  Factor Parameter  

Number of input layer nodes 5 The number of hidden layer nodes 10 

Number of output layer nodes 1 Implied layer activation function logsig 

 Frequency of training  300 Output-layer activation function purelin 

Learning rate 0.0001  Learning target  0.00001 

Table 6. Mean square error and sample correlation coefficient of different training functions 

Training 

function 

 Training sample  Test sample 

Correlation 

coefficient 

 Mean square 

error  

Correlation 

coefficient 

 Mean 

square 

error  

trainlm 0.99301 1.2425 0.9886 2.3495 

traingda 0.89015 8.4422 0.9976 2.9565 

trainrp 0.90691 9.8605 0.84941 3.7883 

traincgf 0.97 4.5742 0.97919 3.801 

traincgp 0.94487 3.0913 0.9155 1.9051 

traincgb 0.9709 2.6715 0.91645 1.0452 

trainscg 0.95799 3.1137 0.95799 4.0626 

trainfg 0.97716 3.0013 0.99874 1.4918 

trainoss 0.96422 2.5254 0.99491 0.98381 

According to Table 6, the correlation coefficient of the training functions trainoss, trainbfg, trainscg, 

traincgb, traincgp, traincgf, trainrp and trainda is lower than 0.98, and the mean square error of the 

training sample is higher than 2.5; the correlation coefficient of the training function trainlm is 0.99301, 

and the mean square error of the training sample is 1.2425. Each training function selects the training 

function trainlm; When the training function is trainlm, the correlation coefficient of the test sample is 

0.9886, the mean square error of the test sample is 2.3495, and the test sample is also effective. Taken 

together, the training function of this model is trainlm.   

3.1.5. Determination of the activation function 

In the absence of an activation function, the BP neural network can only represent a linear relationship, 

and its learning ability will be greatly reduced. The activation function plays an important role in the 

neural network by adding non-linear factors to the network to determine whether a neuron is activated 

and whether the neuron should be discarded or retained. In practice, log S type function logsig, tangent 

S type function tansig, and linear function purelin are the three common activation functions. Function 

purelin is a linear function, which is detrimental to the training of the BP neural network, so function 

purelin is often used as the output layer activation function. In conclusion, all three functions can be 

used in the output layer activation function, and the functions logsig, and function tansig can be used 

as the hidden layer activation functions.logsig-purelin, logsig-tansig, logsig-logsig, tansig-purelin, 

tansig-tansig, tansig-tansig and tansig-logsig as activation functions of the implied and output layer, 

respectively. In order to select the best activation function, the prediction model effect of the above 

activation function is used for comparative analysis. The preset parameters are shown in Table 7, and 

the best activation function is explored. 
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Based on Table 7, different activation function prediction simulations are selected respectively, and 

the mean square error and sample correlation coefficient generated by the model fitting of different 

activation functions are shown in Table 8. 

Table 7. The preset parameters of the best activation functions 

Factor Parameter  Factor Parameter  

Number of input layer nodes 5 The number of hidden layer nodes 10 

Number of output layer nodes 1  Learning rate  0.0001 

Frequency of training  300  Learning target  0.00001 

Training function trainlm   

Table 8. Mean square error and sample correlation coefficient of different activation functions 

 Activation 

function  

 Training sample  Test sample 

Correlation 

coefficient 

 Mean 

square 

error  

Correlation 

coefficient 

 Mean 

square 

error  

logsig-purelin 0.99301 1.2425 0.9886 2.3495 

logsig-tansig 0.97934 2.6917 0.9885 1.3171 

logsig-logsig 0.65177 39.2108 0.89868 22.3158 

tansig-purelin 0.99547 1.0603 0.98895 1.1892 

tansig-tansig 0.98693 1.294 0.97345 1.8514 

tansig-logsig 0.7489 35.2513 0.67636 22.2162 

According to Table 8, tansig-logsig and logsig-logsig as activation function have the low correlation 

coefficient value and a large mean square error of training samples. The activation function tansig-

purelin training sample correlation coefficient and mean square error were 0.99547, and 1.0603 

respectively, while the test sample correlation coefficient and mean square error were 0.98895 and 1.1892 

respectively. The correlation coefficient and mean square error of training and test samples were all 

optimal for the activation function tansig-purelin. Also, the activation function of the hidden layer and 

the output layer of the model are tansig and purelin, respectively. 

In summary, the above research shows that the number of nodes in the input layer of 5 and 10 in the 

hidden layer, the activation function of the single output layer is tansig and purelin respectively, the 

training function is trainlm, the training number is 300 times, the learning rate is 0.0001, and the 

minimum error of the training target is 0.00001. 

3.2. Prediction effect of the BP neural network model 

The BP neural network model, determined by the trial, was simulated with 5 randomly extracted trials. 

The prediction relative error is shown in Table 9, and the correlation coefficient of the BP neural network 

sample is shown in Fig. 3. 

As can be seen from Fig. 3, the training and the test correlation coefficient are 0.99547 and 0.98895 

respectively, indicating that the trained neural network has a certain predictive effect. Table 9 shows 

that the relative error between the actual value of grinding power consumption and the predicted value 

Table 9. Prediction error analysis of BP neural networks 

 Sequence number Sample actual value (kW∙h/t) Sample predictive value (kW∙h/t) 
Relative error 

(%) 

1 49.87 48.84 2.07 

2 45.61 46.86 2.74 

3 45.41 46.77 2.99 

4 54.34 53.22 2.06 

5 50.44 50.92 0.95 
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is within 3%, and the mean square error of the predicted sample is 1.19. The prediction effect of this 

model has certain credibility, indicating that the prediction model of tower grinding power 

consumption established by the BP neural network is effective. However, there is still a relative error 

approaching 3%, indicating that the BP neural network model still needs to be further optimized. 

 

Fig. 3. Sample phase diagram of the BP neural network 

4. The GA-BP neural network prediction model 

4.1. Determination of the network parameters of the genetic algorithm 

4.1.1. Determination of the population initialization 

Population initialization includes the design of initial parameters such as population size, number of 

iterations, and encoding mode. Population size refers to the number of individuals, and the more 

individuals the easier it is to find the global optimal solution, but the computation time is longer. If the 

number of individuals in the population is too small, it is easy to fall into the local optimal solution. 

Taken together, the population size set in this study is 15.  

The maximum number of iterations refers to the upper limit of the number of evolution of the 

population, and when the population iteration reaches the number of iterations, the population stops 

evolving. If the maximum number of iterations is too small, it will lead to the termination of the genetic 

algorithm without finding the optimal solution. The large number of iterations will cause serious 

computing time consuming and reduce the computational efficiency. Thus, the maximum number of 

iterations set in this study was 40. The real number encoding in this study was chosen to encode 

individuals into real number strings containing weights and threshold information. 

4.1.2. Selection of genetic operators 

The selection of genetic operators mainly includes the picking of selection operators, cross operators, 

and variation operators. 

Selection operations are based on the differential fitness values of individuals in the population. The 

selected probability is proportional to their fitness value. Thus, individuals with higher fitness values 

have a greater probability of being selected. The selection operator bears the responsibility of 

introducing the fitness function in the genetic process and also determines whether the individual is 

selected to breed or to be eliminated by the population. In this study, the most commonly used roulette 

selection method was chosen as the selection operator. 
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Crossing operation is an important way of offspring generation in a population, which is of great 

significance for the continuous evolution of the population, and designing the type of crossing operators 

becomes an important step in the study of genetic algorithms. Since the real code method is adopted 

above, the single point real crossover method is chosen as the crossover operator in this study. Usually, 

the probability of crossing is greater than 0 and less than 1, and the crossing probability is 0.4. 

The variation process in the genetic algorithm has some probability to negatively impact the 

direction of the individual population, but the population must have the variation process because the 

variation of appropriate probability will make the population diverse and prevent the population 

development from stagnating. Single-point variants were selected as the variation operator in this 

study. The variation probability value is set low, and the variation probability is 0.03. 

In summary, the above studies found that the GA-BP neural network has 5, 10, and 1 input, hidden, 

and output layer nodes respectively, the training function is trainlm, and the activation function is 

tansig and purelin respectively. The training function is trainlm, the training number is 300 times, the 

learning rate is 0.0001, the minimum error of the training target is 0.00001, the population size is 15, 40 

iterations, the crossover probability is 0.4, and the variation probability is 0.03. 

4.2. Prediction effect of the GA-BP neural network model 

The GA-BP neural network model, determined by trial, is trained and simulated with 5 randomly 

extracted trial data. The prediction error is shown in Table 10, and the sample correlation coefficient of 

the GA-BP neural network is shown in Fig. 4. 

Fig. 4  shows  that  the  training  and  test  correlation coefficient of the sample are 0.99353 and 0.99253  

Table 10. Prediction error analysis of the GA-BP neural network model 

Sequence 

number 

Sample actual value 

(kWh/t) 

Sample predictive value 

(kWh/t) 

Relative error 

(%) 

1 49.87 50.20 0.67 

2 45.61 45.80 0.40 

3 45.41 45.18 0.51 

4 54.34 55.26 1.70 

5 50.44 51.06 1.24 

 

Fig. 4. Sample-phase diagram of the GA-BP neural network 
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respectively, indicating that the trained neural network has a certain predictive effect. It can be seen 

from Table 10, that relative error between the actual and predicted values of grinding power 

consumption is within 2%, and the mean square error of the predicted sample is 0.29.  

Comparing Table 9 with Table 10, the predicted value of GA-BP is closer to the actual sample value 

than that of BP, indicating that the GA-BP neural network is more suitable than the BP neural network 

for the study of yield prediction of intermediate easy selection level of grinding products. It shows that 

the tower mill power prediction model of BP neural network is effective and the GA-BP neural network 

model can be used in the prediction of the tower mill performance. 

5. Genetic algorithm neural network function extreme value optimization 

5.1. Setting of the neural network parameters of the genetic algorithm 

The constructed GA-BP neural network prediction model was used as the fitness function of this study, 

and its prediction value was set as the fitness value, and used to evaluate the quality of individuals in 

the population. All other parameters were the same as those of the GA-BP neural network prediction 

model. The optimization process is random value-taking. If the value range is not set, the optimal 

grinding parameters obtained by the genetic algorithm are likely too different from the actual situation. 

In order to prevent this issue, it is necessary to set the value range of the grinding factors represented 

by each chromosome in advance, and the value range is determined by the upper and lower limits of 

each operating parameter in the grinding data table. 

5.2. Genetic algorithm optimization results and test verification 

Based on the setting of GA-BP neural network parameters, the grinding power consumption of the 

tower mill is optimized. Under the grinding concentration of 66.49%, 301.86%, the filling rate of the 

medium of 96.61%, the medium ratio of 96.61%, and the material-ball ratio of 0.1394, the grinding power 

consumption is 41.069 kWh/t. The grinding time was maintained for 260 s, the laboratory tests were 

performed under these conditions, and the grinding products were subjected to particle size screening, 

as shown in Table 11. 

According to Table 11, the content of -0.074 mm is 65.5%, and the actual grinding power 

consumption is 41.85 kWh/t. The relative error is 1.87% compared with the predicted grinding power 

consumption of 41.069 kWh/t. Furthermore, Fig. 5 shows the particle size distribution of the feed to and 

the product from the tower mill.  

 

 
Fig. 5. The particle size distribution of the samples before after grinding using a tower mill 

6. Conclusions 

In this study, a BP neural network prediction model was established using the grinding concentration, 

screw speed, medium filling rate, medium ratio, and material-ball ratio as the input; and grinding 

power consumption as the output. With the BP neural network model prediction, the relative error is 

within 3%, and the relative error can be reduced to within 2% by further optimizing the prediction 

model by the genetic algorithm GA. Based on the setting of the prediction model parameters of the GA-

BP  neural  network,  the  upper  and lower limits of each operating parameter in the grinding data table  
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Table 11. Results of the product granularity analysis 

Size fraction 

(mm) 
Yield (%) 

Passing cumulative yield 

(%) 

+0.15 18.51 100 

-0.150+0.106 8.41 81.94 

-0.106+0.074 7.58 73.08 

-0.074+0.045 25.16 65.5 

-0.045+0.038 13.1 40.34 

-0.038+0.020 26.94 27.24 

-0.02 0.3 0.3 

Total 100  

are set to optimize the grinding power consumption of the tower mill and verified by the grinding test. 

Thus, the actual grinding power consumption of 41.85 kWh/t with a 1.87% relative error is close to the 

predicted grinding power consumption of 41.069 kWh/t.  
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